887

Reactions of the Monoxides of Carbon and Nitrogen over the Superconducting Lanthanoid Mixed Oxide $YBa_2Cu_3O_y$

Noritaka Mizuno, Mika Yamato, and Makoto Misono*

Department of Synthetic Chemistry, Faculty of Engineering, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan

Large quantities of NO and CO were rapidly absorbed (or intercalated) by $YBa_2Cu_3O_y$ during the reaction of NO with CO at 573 K; NO was taken up initially, then CO absorption and N₂ formation took place, and finally the stationary catalytic reaction, NO + CO \rightarrow 1/2N₂ + CO₂, proceeded.

The lanthanoid mixed oxide YBa₂Cu₃O_y has attracted attention as a superconducting material, and extensive studies of its electronic properties and structure have been reported.¹⁻⁻³ However, little is known of its catalytic properties or chemical reactivity. The reaction NO + CO \rightarrow 1/2N₂ + CO₂ over Cu-containing catalysts has been studied.^{4.5} We have investigated the reaction of NO with CO over YBa₂Cu₃O_y, and have observed the uptake of large quantities of NO and CO during the reaction.

The oxide YBa₂CU₃O_y was prepared as follows. A mixture of CuO, Y₂O₃, and BaCO₃ was calcined at 1193 K overnight in air, and the product was ground to a powder in an agate pestle and then pressed into a disc. The disc was calcined again at 1193 K overnight in air, then cooled in air to room temperature during *ca*. 10 h. The product was re-pulverised before use as a catalyst. The formation of orthorhombic YBa₂Cu₃O_y² was confirmed by X-ray diffraction. It has been reported that the value of y in YBa₂Cu₃O_y² thus prepared ranges from 6.5 to 6.9.³

It was confirmed that this substance showed superconductivity at about 90 K. The surface area was measured by the Brunauer-Emmett-Teller (BET) method to be $0.7 \text{ m}^2 \text{ g}^{-1}$. Our experiments with NO/CO were carried out in a closed circulation system at 298-773 K. The oxide YBa₂Cu₃O_y (200 mg) (1 g corresponds to 1.50×10^{-3} mol at y = 7) was used as a mixture with SiC powder (250 mg) for each experiment. The NO/CO reaction was carried out at ca. 8 kPa (NO : CO 1 : 1). The procedure was as follows: in run (1) $YBa_2Cu_3O_{\nu}$ was exposed to the reaction gas at 573 K after evacuation at the same temperature for 1h; in run (2) $YBa_2Cu_3O_{\nu}$ was exposed to the gas at 298 K after evacuation at 298 K for 20 min, and then the temperature was gradually increased to 573 K and kept there. Small portions of gases desorbed or reacted were taken out intermittently with the aid of a glass sampler and analysed by g.l.c. In an experiment with NO alone, after NO uptake was measured at 573 K (initial pressure 8-17 kPa), the temperature was increased stepwise to 773 K. At each temperature the gas desorbed was collected

Pretreatment Temperature/K	10 ³ (Uptake of NO) /mol g ⁻¹ 573	10^{3} (NO desorbed) ^b /mol g ⁻¹			104(Uptake of CO) ^c /mol g ⁻¹	10^4 (CO desorbed) ^b /mol g ⁻¹
		573	673	773	573	<773
Evacuation						
at 573 K	2.9	0.55	2.7	2.9	7.0	0
for 1 h		(19)	(93)	(100)		
Evacuation						
at 298 K	3.4	0	0.5	2.2 ^d	9.0	0
for 20 min		(0)	(15)	(65)		

Table 1. Uptake of NO and CO by YBa₂Cu₃O_v.^a

^a Uptakes were measured in separate experiments using NO alone or CO alone. ^b Total amounts desorbed below the temperature indicated: % recovery as NO in parentheses. C Difference between amounts of CO decrease and CO2 formed. No N2 (4.8 × 10⁻⁴ mol g⁻¹) was formed in addition to NO.

Figure 1. Reactions of NO and CO at 573 K; ●, ▲, and ■ correspond to amounts of NO, N₂, and N₂O, respectively; \bigcirc and \triangle correspond to amounts of CO and CO2, respectively; (a) reaction course at 573 K; (b) course at 573 K when the reaction of NO and CO was repeated.

in a liquid nitrogen trap (except for N₂). In an experiment with CO alone, after the rapid CO uptake at 573 K had been measured (initial pressure 13-15 kPa), the system was evacuated at 573 K for a short period (1-3 min). It was confirmed that neither CO nor CO₂ was desorbed during this evacuation. The temperature was then increased stepwise to 773 K without a trap.

When NO reacted with CO at 573 K over YBa₂Cu₃O_y which had been evacuated for 1 h at the same temperature [run (1)], a large amount of NO was initially taken up rapidly, then CO uptake took place accompanied by N₂ formation. This was followed by CO₂ evolution. Finally the stationary catalytic reaction NO + CO \rightarrow 1/2N₂ + CO₂ proceeded. In run (2), in which the $YBa_2Cu_3O_v$ had been evacuated at 298 K, very little reaction took place below 573 K. The reaction proceeded at 573 K in a similar way to that in run (1), except that the induction period was a little longer for run (2). Figure 1 shows the course of run (2) at 573 K. The amount of NO uptake after 2 min in run (2) was 1.0×10^{-3} mol g⁻¹, which corresponds to a molar ratio of 0.7 with respect to $YBa_2Cu_3O_{\nu}$, and also to 120 times the monolayer of $YBa_2Cu_3O_{\nu}$ (assuming that the cross section of NO is 14 Å²). Neither N_2 nor N_2O was formed in this period. Such a large uptake cannot be explained only by adsorption on the surface; a large amount of NO must have been absorbed by intercalation or reaction in the catalyst bulk.

The amount of CO uptake [run (2)] after 10 min (9.5 \times 10^{-4} mol g⁻¹) was almost the same as that of NO uptake in the

first 2 min. Thus a large amount of CO was also absorbed in the catalyst bulk. In the meantime, no CO₂ was formed; this reaction began later. The eventual reaction products were mostly N_2 and CO_2 . In the run shown in Figure 1(b), the amount of NO uptake was comparable with that of CO uptake, and N₂ and CO₂ were formed in approximately stoicheiometric ratio in accordance with the reaction NO + CO \rightarrow 1/2N₂ + CO₂. When the YBa₂Cu₃O_y was pretreated with O₂ at 573 K, the reaction was very slow.

The amounts of NO and CO uptake by YBa₂Cu₃O_y, measured separately, are summarized in Table 1. When the $YBa_2Cu_3O_{\nu}$ had been evacuated at 573 K for 1 h, the NO uptake was 2.9×10^{-3} mol g⁻¹ at 573 K in 1.5 h. This amount represents a molar ratio of about 2 with respect to YBa₂- Cu_3O_{y} . During this uptake only small amounts of N₂ and N₂O were observed. The NO molecules thus absorbed were almost completely recovered as NO by increasing the temperature to 673 K. When YBa₂Cu₃O_y was exposed to NO after evacuation at 298 K, the behaviour was different. The NO uptake at 573 K was a little greater $(3.4 \times 10^{-3} \text{ mol g}^{-1})$, and the recovered gas at 673 K was a mixture of NO and N₂; 65% and 28% of NO absorbed were desorbed at 773 K as NO and N₂, respectively. It is clear that a large amount of NO was reversibly absorbed into the catalyst bulk.

On the other hand, CO was taken up at 573 K with simultaneous formation of CO₂. The difference between CO decrease and CO₂ formation was 7.0–9.0 \times 10⁻⁴ mol g⁻¹ (about two-thirds of the total CO uptake), which approximately corresponds to the CO uptake in the initial stage of the CO/NO reaction. The CO molecules held by YBa₂Cu₃O_y were not desorbed below 773 K. The CO absorbed appears to be held more strongly than the NO absorbed in the YBa₂- Cu_3O_v bulk.

We thank Mitsubishi Petrochemical Co., Ltd., for the $YBa_2Cu_3O_v$ sample.

Received, 29th January 1988; Com. 8/00320C

References

- 1 M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, and C. W. Chu, Phys. Rev. Lett., 1987, 58, 908.
- 2 F. Izumi, H. Asano, T. Ishigaki, A. Ono, and F. P. Okamura, Jpn. J. Appl. Phys., 1987, 26, L611. K. Kishio, J. Shimoyama, T. Hasegawa, K. Kitazawa, and
- 3 K. Fueki, Jpn. J. Appl. Phys., 1987, 26, L1228.
- 4 J. W. London and A. T. Bell, J. Catal., 1973, 31, 96.
- 5 G. B. Fisher, S. H. Oh, J. E. Carpenter, C. L. Dimaggio, and S. J. Schmieg, 'Studies in Surface Science and Catalysis,' Elsevier, Amsterdam, 1987, vol. 30, p. 215; Chem. Eng. News, Dec. 8, 1986, p. 20.